A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

نویسندگان

  • Arnaud Duran
  • Fabien Marche
چکیده

In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive GreenNaghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Locally implicit discontinuous Galerkin method for time domain electromagnetics

In the recent years, there has been an increasing interest in discontinuous Galerkin time domain (DGTD) methods for the solution of the unsteady Maxwell equations modeling electromagnetic wave propagation. One of the main features of DGTD methods is their ability to deal with unstructured meshes which are particularly well suited to the discretization of the geometrical details and heterogeneou...

متن کامل

Runge-Kutta discontinuous Galerkin method using a new type of WENO limiters on unstructured meshes

In this paper we generalize a new type of limiters based on the weighted essentially nonoscillatory (WENO) finite volume methodology for the Runge-Kutta discontinuous Galerkin (RKDG) methods solving nonlinear hyperbolic conservation laws, which were recently developed in [31] for structured meshes, to two-dimensional unstructured triangular meshes. The key idea of such limiters is to use the en...

متن کامل

Runge-Kutta discontinuous Galerkin method with a simple and compact Hermite WENO limiter on unstructured meshes

In this paper we generalize a new type of compact Hermite weighted essentially nonoscillatory (HWENO) limiter for the Runge-Kutta discontinuous Galerkin (RKDG) methods, which were recently developed in [34] for structured meshes, to two dimensional unstructured triangular meshes. The main idea of this limiter is to reconstruct the new polynomial using the entire polynomials of the DG solution f...

متن کامل

Krylov implicit integration factor methods for spatial discretization on high dimensional unstructured meshes: Application to discontinuous Galerkin methods

Integration factor methods are a class of ‘‘exactly linear part’’ time discretization methods. In [Q. Nie, Y.-T. Zhang, R. Zhao, Efficient semi-implicit schemes for stiff systems, Journal of Computational Physics, 214 (2006) 521–537], a class of efficient implicit integration factor (IIF) methods were developed for solving systems with both stiff linear and nonlinear terms, arising from spatial...

متن کامل

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

We present an efficient implicit time stepping method for Discontinuous Galerkin discretizations of the compressible Navier-Stokes equations on unstructured meshes. The Local Discontinuous Galerkin method is used for the discretization of the viscous terms. For unstructured meshes, the Local Discontinuous Galerkin method is known to produce non-compact discretizations. In order to circumvent th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017